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a b s t r a c t 

Video data has become the largest source of data consumed globally. Due to the rapid 

growth of video applications and boosting demands for higher quality video services, video 

data volume has been increasing explosively worldwide, which has been the most severe 

challenge for multimedia computing, transmission and storage. Video coding by compress- 

ing videos into a much smaller size is one of the key solutions; however, its development 

has become saturated to some extent while the compression ratio continuously grows 

in the last three decades. Machine leaning algorithms, especially those employing deep 

learning, which are capable of discovering knowledge from unstructured massive data and 

providing data-driven predictions, provide new opportunities for further upgrading video 

coding technologies. In this article, we present a review on machine learning based video 

encoding optimization, aiming to provide researchers with a strong foundation and inspire 

future developments for data-driven video coding. Firstly, we analyze the representations 

and redundancies of video data. Secondly, we review the development of video coding 

standards and key requirements. Subsequently, we present a systemic survey on the re- 

cent advances and challenges associated with the machine learning based video coding 

optimizations from three key aspects, including high efficiency, low complexity and high 

visual quality. Their workflows, representative schemes, performances, advantages and dis- 

advantages are analyzed in detail. Finally, the challenges and opportunities are identified, 

which may provide the academic and industrial communities with groundwork and poten- 

tial directions for future research. 

© 2019 Published by Elsevier Inc. 

 

 

 

 

 

 

 

 

 

1. Introduction 

With the development of multimedia computing, communication and display technologies, many video applications have

emerged, such as TV broadcasting, movies, video-on-demand, video conference, mobile video, video surveillance, remote

control, robotic, 3D videos and free viewpoint TV, Virtual Reality (VR), as shown in Fig. 1 , which can provide immersive

telepresence and realistic visual perception experience. These video applications have been widely employed for multiple

roles in human daily life, such as manufacturing, communication, national security, military, education, medication, and

entertainment. Nowadays, video data has been the majority of the data traffic over the internet and its volume grows ex-

plosively each year. In 2016, global IP video traffic was or 70 exabytes [EB] (one billion gigabytes [GB]) per month, which

accounted for 73% of all consumer internet traffic [13] . Cisco Visual Networking Index (VNI) forecasts the video traffic will

be increased to 82% of all consumer internet traffic by 2021 [13] . On that occasion, million minutes of video contents will
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Fig. 1. Examples of typical video applications. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

be delivered through the network in every second. Regarding Internet video, for example, 400 h of videos were uploaded to

YouTube every minute ( i.e., 65 years video a day) and one billion hours of YouTube videos were watched every day at the

end of 2017 [121] . Besides, mobile video was expected to account for a staggering 78% of total mobile data traffic by the end

of 2021 [14] . IHS Markit reported in China that there were about 176 million surveillance cameras in 2017, which generated

104 EB every month. To further enhance the immersive and realistic visual experiences, more high-end video applications

emerge, such as High Definition (HD)/Ultra HD (UHD), holograph 3D and VR, High Dynamic Range (HDR) and Wide Color

Gamut (WCG) videos, which require larger data volume to represent higher fidelity and more details. Meanwhile, the num-

ber of video clients and cameras in use grows rapidly as the video demands keep boost in recent years, such as HDTV,

surveillance camera, laptop and smart phones. The total amount of global video data doubles every two years, which has

been for the bottleneck for data processing, storage and transmission. 

Video coding is one of the core technologies in video applications that enables to structure and compress the video data

in a more effective manner for computing, transmission and storage. It has been developed over three decades with four

generations and the coding efficiency doubles every ten years. But there is a big gap as compared with the rapid growth

of global video data doubling every two years. Achieving much higher compression efficiency and narrowing the gap in

an effective way become urgent missions for video coding. Machine learning is a field of study that can learn from data,

discover hidden patterns and make data-driven decisions. Due to its superior performance in learning from data, many

emerging works have applied machine learning algorithms to video coding to further promote the coding performances,

which becomes one of the most promising directions in both academic and industrial communities. 

In this paper, we aim to provide a comprehensive overview on machine learning based video coding optimization. The

main contributions of this work are: 1) We summarize the representations and redundancies of video and figure out three

key challenging issues in video coding; 2) Subsequently, we overview the recent advances on learning based low com-

plexity video coding optimization, which are categorized into statistical, machine learning based and end-to-end learning

based schemes. Their decision problems, representative features, workflows, advantages and disadvantages are analyzed. 3) 

We review the learning based high efficiency video coding with four key problems, including predictive coding, transform

coding, entropy coding and enhancement. Their problem formulation, representative schemes and coding performances are 

presented. 4) We conduct comprehensive survey on the subjective visual quality assessment and learning based visual qual-

ity prediction, which is the key to perceptual video coding. The quality prediction is summarized and reviewed in four

categories based on the functionalities of learning models in feature extraction and fusion. 5) The challenging issues and

potential research opportunities in learning based video coding optimizations are identified. 

The paper is organized as follows. In Section 2 , the representations and redundancies of videos are first analyzed. Sub-

sequently, the milestones of video coding standards and challenging issues are presented in Section 3 . In Sections 4 –6 , the

recent technical advances on machine learning based coding optimization are further analyzed from three key aspects, in-

cluding low complexity optimization, high efficiency coding tools design and perceptual encoding optimization. Meanwhile,

their workflows, advantages and disadvantages are analyzed in detail. Finally, we draw the conclusions and identify future

research opportunities in Section 7 . 



Y. Zhang, S. Kwong and S. Wang / Information Sciences 506 (2020) 395–423 397 

Fig. 2. Trends of video data representation from user end [16] . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Representations and redundancies of video data 

2.1. Representations of video data 

The 3D world scene ( P ) can be modelled as a plenoptic function [5] with 7 parameters, 

P = F 7 ( ϕ, θ, λ, t, V x , V y , V z ) , (1)

where V x , V y , V z indicate the horizontal, vertical and depth viewing position in the 3D world coordinates, ϕ and θ represent

viewing directions, λ is the spectrum wave length and t is the time sampling for dynamic scene. It can also be presented in

Cartesian coordinates as [5] 

P = G 7 ( x, y, λ, t, V x , V y , V z ) , (2)

where x and y are coordinates on an image plane. With the development of video technologies, the video representations

are extended with the following five trends, as shown in Fig. 2 . 1) spatial resolution ( x , y ): the spatial resolution of video

( x , y ) grows continuously to enhance the video clarity. It is from the Common Intermediate Format (CIF) (320 × 240) to

Standard Definition (SD) (720p), HD (1080p) and now 4 K (3840 × 2160)/8 K (7680 × 4320), which may be further extended

to billions of pixels beyond the fidelity of human vision. 2) Viewing angle and depth ( V x ,V y ,V z ): the video formats are

developed from 2D to stereo (2-views), multiview, free viewpoint video, 360 ° VR [10] , light field and volumetric, towards

providing 3D, immersive and six Degree of Freedoms (DoFs) vision. 3) Spectrum ( λ) indicating color fidelity and amplitude

resolution: Video develops from black/white, color with RGB, and now targets to the WCG and HDR for more colorful and

higher dynamic presentations. It will even be upgraded to high spectrums with 16 to 24-bit per channel for some specific

applications. 4) Time sampling ( t ): with the development of capturing and computational photography technologies [16] ,

the video frame rate increases from 25/30 frames per second (fps) for SD video to 60 fps for HD video, and will probably

be 120 fps or even higher frequency. 

Since video will be distorted during acquisition, compression, transmission, processing or display, the video presented to

users is no longer the original representation complying with the plenoptic function, but has quality degradations. Therefore,

in addition to the above four dimensions of video representation, there is another important dimension, the quality ( q ),

from the user perspective. With the development of communication and display technologies, the user requirements on the

video Quality-of-Experience (QoE) increases continuously. It is worth noting that the QoE of videos is not only limited to the

picture quality or clarity, but also the visual comfort, depth quality, fatigue, immersion, DoF, delay and other visual factors

relevant to the visual experience. It generally develops from low, medium, high to ultra-high and tends to be more realistic.

Generally, the video representation is in the trend of being more realistic and facilitating more interactivities. However,

the data volume of realistic representation grows explosively, which is thousands or even million times of the conventional

2D video. Thus, video redundancies shall be explored for effective coding. 

2.2. Signal and perceptual redundancies in video 

Raw captured videos are highly redundant in presenting a realistic 3D world scene. Due to the similarities in an object

and high spatial fidelity, spatial neighboring pixels or blocks in an image are highly correlated, which are denoted as spatial

correlations, as shown in Fig. 3 . Moreover, due to high capturing frame rate, e.g. , 60 fps, contents among successive frames

are highly correlated, especially for the static regions, which are denoted as temporal correlations. In addition, the 3D world

scene is captured simultaneously by a number of cameras with slightly different positions or angles to obtain the 3D depth.

The captured images among different views are highly correlated as well, which leads to inter-view correlations. Besides

the spatial-temporal-view correlations, there are statistical entropy redundancies based on the probabilities of symbols that

would appear. They can be regarded as signal redundancies in videos. 
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Fig. 3. Correlation and signal redundancies in raw video data. 

Fig. 4. Physiological and psychological perceptual redundancies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Since most videos are ultimately perceived by Human Visual System (HVS), not all distortions of videos are noticeable

by HVS, which explains the philosophy of perceptual redundancies, as shown in Fig. 4 . The HVS comprises two functional

parts, the eyes and the brain. Based on the physiological (eyes) and psychological (brain) studies of HVS, many visual prop-

erties and redundancies have been revealed and inspired. For example, if several pixel values of an image have a very fine-

scale variation, the distortion is usually un-noticeable, leading to the concept of Just Noticeable Difference (JND). These are

physiological perceptual redundancies functioned by the eyes. In addition, the perceptual sensitivity varies with the video

contents, human conscious and interest, i.e. Region-of-Interest (ROI), which is correlated with psychology functioned by the

brain. Moreover, new perceptual redundancies are still under further exploration. Video coding aims to exploit and remove

the signal and perceptual redundancies as much as possible while maintaining the visual quality. In next section, we review

the milestones of video coding standards and their key challenges. 

3. Milestones of video coding standards and challenging issues 

3.1. Milestones of video coding standards 

Worldwide researchers and organizations, such as Motion Picture Expert Group (MPEG) from ISO/IEC and Video Coding

Expert Group (VCEG) from ITU-T, make significant contributions to the video coding standardization and advances of coding

technologies. Fig. 5 shows the evolution of the coding standards, in which five leading standards (H.261, MPEG-4, H.264/AVC

[108] , HEVC and VVC in red rectangles) in four generations have been issued in the last three decades. H.264/AVC standard

is one of the most successful standards and has been widely used in SD/HD video applications nowadays. Due to the high

quality requirements of video applications, the UHD video [31] (such as 4 K, 8 K and beyond) emerges, which increases the

traffic load explosively. In 2013, Joint Collaborative Team (JCT) from MPEG and VCEG standardized the third generation of

coding standards, called High Efficiency Video Coding (HEVC) [95] , targeting at the UHD video applications. Its extensions

including 3D Video Coding (3DVC), Scalable Video Coding (SVC) and Screen Content Coding (SCC) were also developed for

different scenarios. Beyond HEVC, Joint Video Exploration Team (JVET), consisting of the experts from MPEG and VCEG, was

established in 2015 to explore more sophisticated video coding algorithms for the Next Generation Video Coding (NGVC)

beyond HEVC, which is Versatile Video Coding (VVC) [36] since July 2018. It targets to bring another 50% bit rate saving for

UHD (higher resolution, frame rate, and bit depth) and HDR/WCG videos while maintaining high visual quality to the end

user. In addition, Point Cloud Compression (PCC) and 360 ° panoramic VR video coding standards are also under investiga-

tions for the immersive 3D and VR applications. Also, many off-springs or extensions of standards were developed, such as



Y. Zhang, S. Kwong and S. Wang / Information Sciences 506 (2020) 395–423 399 

H.263
MPEG-2

MPEG-1

DivX6Real8
H.263++
WM8/9MPEG-4

SVC/MVC

Real10
VC-1/2

AVS

AV-1

Real11
H.265/HEVC

VP-6

VP-9

H.264/AVC

1990 2000 2010 2020201520051995

H.261

VR/360

PCC

Motion Compensation
Transform Coding

Sub-pixels Motion Compensation
Intra Prediction

CABAC
Multi-reference frame

Variable size block partition
In-loop filtering

Quad-tree structure
CU/PU/TU partitioning

Refined intra/inter
prediction

QTBT
Adaptive Multiple Transform

TIME

C
O

M
PR

ES
SI

O
N

EF
FI

C
IE

N
C

Y

SD

HD/4K/3D

UHD/8K/VR

QCIF/CIF

1st Generation
2nd Generation

3rd Generation
4th Generation

VVC AVS3

MV/3D-HEVC
SCC
AVS2

Leading

Offspring
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MV-HEVC, AVS in China, Real11 by RealNetworks, VP8/9 by Google, VC-1/2 by Microsoft, AV-1 by Alliance for Open Media

(AOM) , etc. . There remain a number of common and critical issues that shall be addressed in further upgrading the video

coding technologies. 

3.2. Key requirements and challenges of video coding optimizations 

The main target of video coding is to minimize the bit rate while maintaining the visual quality. There are three key

requirements on the video coding [103] , including high compression ratio, low complexity, and high visual quality. 

3.2.1. Compression ratio 

The most important requirement of a coding standard is the compression efficiency. The target of each video coding

standard is to double the compression ratio comparing to its predecessor standard. As more and more advanced coding

tools have been developed in the new standards, the compression ratio approaches its limitation and is almost saturated. To

explore the video redundancies and improve the compression ratio further become vital and extreme challenging. 

3.2.2. Coding complexity 

The second key requirement is the complexity. The coding complexities of the encoding and decoding algorithms are re-

lated to the hardware cost, memory access, computing power and so on, which are in direct proportional to the production,

usage and maintenance cost. As more advanced and complicated coding algorithms were adopted in the on-going standards

to improve the coding efficiency, it causes dozens or hundreds times of complexity burden as compared to its predecessor.

Moreover, as the view-spatial-temporal resolutions, bit depth and the number of views increase, as illustrated in Fig. 2 , the

computational cost of video codec is multiplicatively raised, probably million times. Thus, to enable the real-time realistic

broadcasting, such as UHD, 3D and VR, it is highly desirable to lower the computational cost with optimization techniques. 

3.2.3. Visual quality 

The third key requirement is the visual quality or QoE since videos shall be compressed as much as possible while

maintaining the visual quality. Currently, the image/video quality is mainly measured by Peak-Signal-to-Noise Ratio (PSNR)

or Mean Squared Error (MSE) due to its simplicity. However, the PSNR and MSE cannot truly reflect the perceived quality of

HVS, which is a complicated non-linear system. Although many important perceptual factors were revealed in psychological

and physiological perspectives, the understandings on HVS are still very limited. It is challenging to develop an effective

quality metric that can be widely applicable to video coding to explore perceptual redundancies. 

Machine learning has the capability of discovering knowledge from unstructured massive data. Many emerging works

took advantage of learning algorithms to upgrade the video coding performances. They can generally be divided into three

categories according to the three key coding requirements, which are learning based low complexity coding optimization,



400 Y. Zhang, S. Kwong and S. Wang / Information Sciences 506 (2020) 395–423 

Table 1 

Block modes in the five leading standards. 

H.261 MPEG-4 H.264/AVC H.265/HEVC VVC 

Coding block partition 16 × 16 16 × 16 16 × 16 to 4 × 4 

7 types 

64 × 64 to 8 × 8 

Quad-tree structure 

256 × 256 to 8 × 8 

QTBTTT 

INTRA prediction / 1 mode,DC/PCM 4 for 16 × 16 

9 for 4 × 4 

33 directions, DC and 

Planar, 35 modes 

65 directions, DC and 

Planar, 67 modes 

INTER PU / / / SKIP/Merge, 2 N × 2 N, 

N × 2 N, 2 N × N , nR × 2 N, 

nL × 2 N, 2 N × nU, 2 N × nD, 

N × N 

QTBTTT 

Reference frame 1 1 for P2 for B Multi-reference frames, 

up to 5 

Hierarchical, 

multi-reference frame 

Hierarchical, 

multi-reference frame 

TU 8 × 8 DCT 8 × 8DCT 4 × 4 ICT and 2 × 2 

Hardmard Transform 

8 × 8, 16 × 16 

32 × 32, SQT and NSQT, 

Integer DCT and DST 

4 × 4, 8 × 8, 16 × 16, 

32 × 32 

up to 128 × 128, SQT and 

NSQT,ICT, IST, AMT 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

learning based high efficiency coding optimization and high quality coding optimization. They will be discussed in detail in

Sections 4 –6 . 

4. Learning based low complexity coding optimization 

4.1. Mode decision in video coding 

Refined variable block size partitioning is capable of improving the prediction accuracy, which consequently reduces the

coding residue and improves the coding efficiency in predictive coding. Table 1 shows the evolution of block modes in

standards from MPEG-1, 2 to H.264/AVC, H.265 and the on-going VVC. We can observe that the only one kind of block, i.e.,

16 × 16 denoted as macroblock, is available for the H.261 and MPEG-4. In H.264/AVC, there are seven variable block-size

partitioning candidates varying from 16 × 16 to 4 × 4, which are 16 × 16, 8 × 16, 16 × 8, 8 × 8, 4 × 8, 8 × 4 and 4 × 4 [108] .

Then, the optimal mode is determined by Rate-Distortion (RD) cost comparison after checking each mode. In H.265/HEVC,

the quad-tree structure is adopted for partitioning each Coding Tree Unit (CTU), where the Coding Unit (CU) size varies from

64 × 64 to 8 × 8 in quad-tree [95] . For each CU, it could be further partitioned to different Prediction Unit (PU) modes, such

as SKIP/Merge, 2 N × 2 N, N × 2 N, 2 N × N , nR × 2 N, nL × 2 N, 2 N × nU, 2 N × nD and N × N for INTER prediction. The on-going

standard VVC of the JVET adopts Quad-Tree plus Binary Tree (QTBT) and Ternary Tree (TT) for block partition [1] , which

utilizes asymmetric binary and ternary partitioning to split a leaf node into two/three unequal child nodes. Moreover, the

CU size ranges from 256 × 256 to 8 × 8. 

In addition to the variable size block partitioning, the number of prediction modes is also increased. For example, the

numbers of INTRA prediction modes are 1, 4/9, 35 and 67 for MPEG-2, H.264/AVC, H.265 and the VVC, respectively. Simi-

larly, more refined modes or parameters are introduced in INTER prediction, reference frame selection, Transform Unit (TU),

Motion Estimation (ME) and loop filtering to improve the coding efficiency. More and more block mode candidates are in-

cluded in the evolution of coding standards from H.264/AVC to VVC, which centuples the coding complexity. Thus, effective

mode decision is required. 

4.2. Mode decision problem formulation 

The mode decision problem in video coding is to select the best one among multiple mode candidates. In addition,

multiple decision layers are usually structured in a recursive form. A general mode decision problem is to find the optimal

mode set { α∗, β∗, γ ∗} by minimizing the RD cost ( J ) between the candidate ( C ) and reference ( R ) blocks, which can be

mathematically presented as 

{ α∗, β∗, γ ∗} = arg min 

α∈ A 

(
arg min 

β∈ B 

(
arg min 

γ ∈ �
J ( R , C ( α, β, γ ) ) 

))
, (3) 

where C and R are the candidate and reference blocks, J (.) calculates the RD cost between the two blocks [95] , α, β , and γ
are mode parameters for candidate block, e.g. , CU mode, motion vector and reference frame indices, A, B and � are sets of

mode candidates. Fig. 6 shows the mode decision problems in HEVC for different layers. For example, the CU size decision

can be formulated as a recursive binary classification by determining whether the CU is split or not. Some layers, such

as PU size decision, INTRA mode and multi-reference frame selection can also be formulated as multi-class classification

problems due to multiple candidate modes. Furthermore, multiple decision layers can be formulated as recursive multiclass

classifications, which are more complicated. There are five recursive loops in total for INTER coding, which include the CU,

PU, reference frame, TU and ME from the top. For HEVC INTRA coding, it has four loops, including CU, PU, angular prediction

mode and TU size. 



Y. Zhang, S. Kwong and S. Wang / Information Sciences 506 (2020) 395–423 401 

CU Size Decision
64x64, 32x32, 16x16, 8x8

Intra PU Size Decision
2Nx2N, NxN
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Fig. 7. Workflow of learning based mode decisions. 

 

 

 

 

 

 

 

 

 

4.3. Learning based fast mode decision 

To adequately address the mode decision problem in video coding, the existing works on fast mode decision can be

divided into three categories, including statistical approaches, machine learning based schemes and end-to-end learning

based schemes. Fig. 7 shows a general workflow for these three learning based mode decisions. 

4.3.1. Statistical approaches 

The coding complexity is critical for H.264/AVC and beyond, and a number of statistical approaches have been developed

to lower the complexity of video encoder [68,90,129,59,131,91,128] . Liu et al. [68] proposed an INTER mode decision algo-

rithm based on motion homogeneity using Motion Vector (MV) field of 4 × 4 blocks, where some INTER modes were skipped

for motion homogenous regions. Shen et al. [90] proposed an adaptive fast multi-frame selection algorithm that exploited

the correlation among the neighboring blocks and information of ME from previous searched reference frames. Zhang et al.

[129] developed a statistical early termination model for fast SKIP/DIRECT mode decision in H.264/MVC based on the RD

cost distribution. HEVC has more mode candidates and is more complex. To lower the complexity of HEVC mode decision,
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Kim et al. [59] adopted the RD cost as the key feature for PU early skip and early termination based on Bayes decision rule.

Additionally, the RD cost distribution and spatial correlation [131] were jointly exploited for fast CU mode decision in HEVC

INTRA coding. In [91] , a fast INTER-mode decision algorithm for HEVC was proposed by jointly exploiting INTER CU correla-

tion of quad-tree structure and the spatio-temporal correlations among neighboring CUs, in which the prediction mode, MV

and RD cost were found strongly correlated. In [128] , the early termination and early skip models were jointly used for fast

mode decision in HEVC INTRA coding, in which RD cost was used as key feature and the coding complexities over different

decision layers were jointly minimized subject to acceptable rate-distortion degradation. 

Basically, they are statistical approaches for fast mode decision. The general coding framework for these approaches is

shown as the left part of Fig. 7 . Firstly, it extracts hand-crafted key features, such as the RD cost, MV or sum of weighted

CU depth of neighboring CUs, spatial or temporal correlations. Then, empirical statistics-based hard or soft thresholds are

then determined for each of these key features subject to high prediction accuracy in the decision making. The advantages

of these algorithms are simple, easy for implementation and hardware friendly. Meanwhile, they are usually efficient due

to very limited complexity overhead in implementation. However, their drawbacks are 1) only very small number of key

features can be exploited in each algorithm, usually 1 to 3 key features, which restricts the discriminability for distinguishing

each mode. 2) These features usually work individually and independently. 3) The thresholds of these algorithms are usually

determined based on the statistical analyses on a small set, e.g. , a number of video frames or sequences, which will reduce

the adaptability of the proposed algorithms. Using stricter threshold usually improves the adaptability, but leads to less

complexity reduction. 

4.3.2. Machine learning based mode decision schemes 

Mode decision problem can be casted into a classification problem, and learning algorithms were then explored in clas-

sifying modes in video coding. A number of works [23,96,11,8] had explored machine learning based mode decision for

H.264/AVC. In these schemes, the seven mode candidates (see Table 1 ) were divided into several subsets and predicted by

trained models. Binary classifiers, including Support Vector Machine (SVM) [23] , unsupervised clustering [96] , Back Prop-

agation Neural Network (BPNN) [11] and decision tree [8] , etc. , have been applied to skip some modes or determine the

best mode among the seven block candidates in H.264/AVC. Meanwhile, a number of features have been developed, such as

RD cost normalized by Sum of Absolute Difference (SAD) [23] , spatial and temporal correlation, SKIP mode RD cost [96,8] ,

INTER and INTRA SAD, MV difference and gradient [11] . 

Compared to H.264/AVC, HEVC has more complex decision problems, which include recursive quad-tree CU mode deci-

sion, multi-class PU and TU mode decisions. In addition, HEVC has a much larger number of mode candidates, which makes

the classification task more challenging. A number of works have also been proposed for machine learning based HEVC

INTER [111,88,130,138,42,72,15,26,110,25,139,101,89,133] and INTRA [22,132,66,123,125] coding optimization in the past few 

years. 

For the HEVC INTER coding, Xiong et al. [111] determined the best CU based on unsupervised K-nearest clustering of

Pyramid Motion Divergence (PMD), which was generated from the optical flow of down-sampled frames. The CU size deci-

sion in HEVC is a recursive decision process, Shen et al. [88] proposed a CU early termination algorithm for each level of the

HEVC quad-tree CU partition by using weighted SVM, where RD cost increments caused by misclassifications were deter-

mined as weights in SVM training. Zhang et al. [130] further modelled the quad-tree CU decision as three-level hierarchical

binary decision problem, and learned the optimum SVM hyper-planes for early termination and early skip, respectively, at

each decision layer. Meanwhile, optimal off-line learning parameters were derived to achieve the trade-off between RD per-

formance and complexity reduction. Zhu et al. [138] enhanced the CU decision based on fuzzy SVM, which considered the

sample and feature selections in learning process. Additionally, Bayesian decision rules [42,72] , decision tree [15] , Neyman-

Pearson based rule [26] , Markov Random Field (MRF) [110] and Markov Chain Monte Carlo (MCMC) models [25] were also

explored to solve the INTER CU size decision problems. Also, boosting and ensemble algorithms of using multiple learning

algorithms were also used to improve the prediction accuracy, such as review system using multiple SVMs [138,139] and

random forest [101] . Table 2 shows the features, classifier and coding performances of representative leaning based mode

decision schemes under different configurations, including All Intra (AI), Low Delay P (LDP), Low Delay B (LDB) and Random

Access (RA). 

Besides the CU size decision, there are PU, TU size decision and reference frame selection problems in INTER coding.

Since the CU size is the outer loop of the mode decision, the PU size is determined conditionally with a given CU. In [139] ,

PU size decision was formulated as a multi-class problem and solved by a multi-class SVM. Since SKIP mode was of high

probability to be selected as the optimal mode in each CU, SKIP/Merge mode was predicted by a binary SVM algorithm to

early terminate the PU mode decision. In [89] , the correlation between variance of residual coefficients and TU size was

exploited to reduce the number of TU candidates for a given CU/PU block, then, Bayesian theorem detection was utilized for

predicting TU size. The CU, PU, TU and reference frame selection are in different mode decision levels, which can be jointly

optimized for the INTER coding. However, the joint classification problem is recursive and hierarchical, which is much more

complicated to achieve the optimal. 

Features are key to the prediction accuracy of a learning algorithm. Some representative features for the mode decisions

are also listed in Table 2 , which can be basically categorized into five types: 1) The previous coded information/pre-analysis

of the current block, 2) the spatial correlation information, 3) the temporal correlation information, 4) global texture and

motion information. Good and representative features will significantly improve the discriminability and prediction accuracy 
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Table 2 

Key features, classifier and performances of leaning based fast mode decision for HEVC and beyond. 

Author &Year Decision Problem Feature Sets Feature Number Classifier Performance # 

CFG TS(%) BDBR (%) 

Y. Zhang’15 [130] INTER CU (1)CBF. (2)RD cost. (3)Distortion. (4)Coding bits. (5)MV. (6)CU depth. 

(7)RD costs of neighboring CUs. (8)Skip flag. (9) Quantization Parameter 

(QP). 

9 SVM LDP −51.5 1.98 

H. S. Kim’16 [42] CU Minimum RD cost of (1) INTER and (2) INTRA prediction mode at each 

CU. 

2 Bayesian decision 

rule 

RA −53.6 0.71 

LDP −48.5 0.62 

LDB −48.4 0.63 

AI −54.2 0.96 

J. Moreno’ 17 [72] CU RD cost 1 RA −38.2 0.82 

LD −36.4 1.69 

G. Correa’15 [15] CU (1)PU splitting mode. (2)Coding tree depths used in neighboring CTUs 

already encoded. (3)A division between the RD costs using 2 N × 2 N and 

MSM mode, i.e. RD 2N ×2 N/RD MSM . (4)The normalized difference between 

the RD costs of 2 N × 2 N and MSM, i.e. Norm(RD 2N ×2N -RD MSM ). 

(5)RD 2N ×2 N, (6)RD MSM , (7)RD 2N ×N , (8)RD N ×2 N , (9)SkipMergeFlag. 

(10)MergeFlag. 

10 Decision tree RA −36.7 0.28 

PU (1) RD 2N ×2 N/RD MSM . (2) Norm(RD 2N ×2N -RD MSM ). (3) RD 2N ×2 N (4) RD MSM 

(5)RD BestPU . (6)Split flag. (7) RD BestPU /RD MSM . (8) Norm(RD BestPU -RD MSM ). 

8 −49.6 0.56 

TU (1)- (3)SADs from luminance Y, chrominance U and residues. (4) RD cost 

of encoding a TU. (5)-(7) Number of nonzero coefficients for Y, U and 

residues. 

7 −7.2 0.05 

Q. Hu’16 [26] CU RD cost distribution. 1 Neyman Pearson 

based rule 

RA −51.4 1.20 

PU SKIP Class-conditional probability density function of RD cost. 1 −45.9 0.72 

K. Goswami ’18 

[25] 

CU (1)Entropy difference between the current CU and the reference CU. 

(2)RD cost of skip and non-skip CU. (3)Variance of entropies of child CUs. 

3 Bayesian & MCMC RA −51.6 1.11 

LDB −49.5 1.25 

L. Zhu’17 [139] CU and PU SKIP (1)SAD between current block and co-located block, (2)CU depth, (3)PU 

partition, (4)Context skip flag, (5)Merge flag, (6)RD cost, (7)Skip flag, 

(8)Distortion, (9)CBF, (10)Coding bits, (11)QP. 

11 SVM LDP −68.3 4.19 

LDB −67.3 3.84 

RA −65.6 3.66 

H. R. Tohidypour 

’17 [101] 

CU in SHVC (1)Motion information, (2)The lowest RD cost mode of the co-located 

block in the previous frame of the same EL, (3)The lowest RD cost mode 

of the parent CU, (4)The lowest RD cost mode of the corresponding block 

in the BL. 

4 Bayesian classifiers RA −45.4 1.13 

L.Shen’15 [89] TU Variance of residual coefficients. 1 Bayesian decision 

rule 

RA −46.0 0.5 

LD −46.0 0.6 

( continued on next page ) 
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Table 2 ( continued ) 

Author &Year Decision Problem Feature Sets Feature Number Classifier Performance # 

CFG TS(%) BDBR (%) 

L. Zhu’16 [133] CU, Trans-coding (1) SAD between current and co-located blocks, (2)Coded block pattern, 

(3) MB partition types, (4)Number of non-zero DCT coefficients, (5) DCT 

coefficients energy, (6)CU depth, (7)Merge flag, (8)Skip flag from 

bit-stream, (9) Context skip flag, (10)CBF of current coding, (11)RD cost 

of current CU. (12)Skip flag of the current CU, (13) Merge flag of the 

current CU. 

13 out of 24 Weighted SVM LDP −50.2 1.98 

RA −49.2 2.40 

F. Duanmu’16 [22] CU size decision (1) Sub-CU horizontal and vertical DC difference. (2)CU variance based 

on pixel level luminance values. (3)CU gradient kurtosis. (4)CU gradient 

magnitude peak. (5)Zero gradient percentage. (6)CU color number. 

6 Decision tree AI −52.0 3.65 

Y. Zhang ’ 17 [132] INTRA CU (1) Variance, (2) variance difference, (3)-(4) RD cost of PLANAR mode 

divided by distortion or QStep, (5) neighboring RD cost, (6)-(7) 

neighboring CU or CU plus PU depth, (8)-(9) RD cost and bits of previous 

coded mode. 

3–6 for different 

layers 

SVM AI −52.4 1.58 

X.Liu’17 [66] INTRA CU (1)Neighboring MSE, (2)Direction complexity, (3)Sub-CU’s complexity 

difference, (4)QStep . 

4 Dual-SVM AI −59.6 1.26 

T. Zhang’17 [125] INTRA CU (1)Depth difference between current CU and its neighboring CUs, (2)The 

ratio of HAD costs between the current CU and its neighboring CUs. 

2 Linear SVM AI −43.1 0.50 

INTRA mode (1) AGH, (2)AGV 2 Empirical 

threshold 

−15.2 0.18 

Z. Liu’16 [70] CU (1)Learned Features from 64 × 64 block of raw pixels ∗ (2)QP 17 CNN AI −61.1 2.67 

M. Xu’18 [114] CU Learned features from 64 × 64 block of raw pixels ∗ 2688/448 CNN/LSTM AI −61.8 2.3 

LDP −54.2 1.5 

Z. Jin’17 [34] INTRA QTBT Learned features from 64 × 64 block of raw pixels ∗ . 48 CNN AI −42.8 0.65 

K. Kim’18 [46] CU Learned features from 64 × 64, 32 × 32, 16 × 16 block of raw pixels ∗ . 32/32/32 CNN LDP −60.6 3.75 

RA −61.8 3.91 

J. Xu’18 [112] CU, Trans-coding (1)MV,(2)MB partition, (3)Bit, (4)Residual 4 LSTM LDP −59.6 1.16 

RA −55.4 1.53 

N.Li’19 [54] INTER CU (1)CU Depth. (2)RD cost. (3)Distortion. (4) Skip flag. (5)CU location. 5 RL&NN LDP −34.34 0.85 

∗ Features are learned from block of raw pixels, and the number of features are the dimension of input to the first FC layer. 
# The coding performances are evaluated with Bjontegaard Delta Bit Rate (BDBR) and Time Saving (TS), which are highly co-related to the test video sequences, experimental settings and configurations (CFGs). 
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of a learning based mode decision, while bad or irrelevant features may have negative impacts on the prediction. In addi-

tion, increasing the number of features raises the dimensions of input data, which will increase the complexity overhead of

feature extraction and on-line learning complexity. Therefore, feature selection algorithm is required to select more repre-

sentative features. In [88] , a filter based feature selection scheme was presented, where F-score was used as a feature corre-

lation measurement and five top features were selected among ten. In [133] , top 13 features were selected from 23 features

with the exhaustive search. Although the feature selection overhead is not considered for off-line case, it is time consuming

if we have large feature sets. Basically, these features in related works [111,88,130,138,42,72,15,26,110,25,139,101,89,133] are

manual handcrafted features and it is very difficult to find reliable and discriminative features for the mode decision. Since

there are multiple layers of mode decisions in video coding, including CU size, PU, TU and reference frame selection, etc. ,

different features are usually required for different decision problems and frame types. In addition, due to the diversity of

the video contents, such as natural scene, fast motion, surveillance and screen content, features shall be specifically designed

to adapt the videos. Therefore, on-line feature selection may be further required in order to have a good trade-off between

accuracy and overhead for the mode decision problem. 

Sample selection is also an important issue for learning based mode decision to solve the imbalance problem of training

data, which had been considered in works [88,130,138,132] . Since the optimal mode can be determined using exhaustive full

RDO by the benchmark video encoder, sufficient training data can be labelled. However, similar samples may be generated

due to similar contents among frames and videos, which causes sample redundancies. Besides, training samples are imbal-

ancedly distributed among classes and within a class. For example, in the CU size decision the number of large CUs, e.g.,

the number of 64 × 64 is much less than those of 8 × 8 or 16 × 16 CUs. In addition, the sub-classes of samples are also not

evenly distributed within a class, e.g. 32 × 32 and 16 × 16 are imbalanced in split class. To solve this problem, sub- and up-

sampling [132] methods were commonly used to achieve balance data. Also, cost-sensitive learning method has also been

used in [88,130,138] by considering the cost types and magnitudes of misclassification, such as RD cost and complexity. 

For the INTRA coding, the complexity is lower than the INTER coding; however, the complexity overhead from the feature

extraction and learning is more critical. Duanmu et al. [22] adopted the decision tree classifiers to classify block type ( i.e. ,

natural image or screen content), CU partitioning and directional blocks. Six dimensional features were exploited. Then, the

sequential mode checking process was early terminated when the current mode coding rate was lower than a statistical

threshold. Zhang et al. [132] proposed two-stage of SVM based classifications for INTRA CU size decision, where the split,

non-split and uncertain were predicted by the first off-line SVM classifier, then, a second stage on-line SVM classifier was

used to refine the uncertain prediction from the first one. Different features sets were exploited for each CU decision layer

to minimize the complexity overheads. Liu et al. [66] further exploited dual-SVM model for CU depth decision, meanwhile,

four dimensional features, including image texture complexity, direction complexity, sub-CUs complexity and Quantization

Parameters (QPs), were adopted. 

In addition to the CU size decision, there are 35 angular prediction modes in HEVC INTRA coding, which is a multi-class

decision problem. In HEVC, instead of checking all 35-mode, Rough Mode Decision (RMD) has been adopted to select a

small set (3 to 8 plus MPM modes) for full RDO. H. Zhang et al. [123] proposed a progressive rough mode search (pRMS)

to selectively check the potential modes instead of traversing all 35 candidates in RMD. T. Zhang et al. [125] utilized the

average gradients in the horizontal (AGH) and vertical direction (AGV) to decide a rough range of block directions. These

were statistical approaches. Besides, random forest was used to estimate an INTRA-prediction mode in [83] , where only four

pixels reflecting a directional property of a block were used as key features to reduce the complexity overhead. It achieved

18.3% and 17.2% complexity reduction for HEVC and VVC, respectively. Few works addressed the INTRA prediction mode

using machine learning tools. The main reasons are 1) each INTRA prediction mode is with less complexity, and machine

learning complexity overhead will no longer be negligible, and 2) it is more challenging to discriminate the prediction modes

since they are eventually highly similar to each other. 

The major working flow of these learning based mode decision schemes is shown in Fig. 7 . Firstly, model the mode

decisions in video coding into classification problems, such as binary, multiple hierarchical binary and multi-class classifica-

tions. Secondly, develop a number of handcrafted features and trainable classifiers to solve the classification. The advantage

of these works are 1) a number of features are jointly utilized, 2) The prediction accuracy and discriminability can be im-

proved since the classifiers are able to nonlinearly map the input feature vectors into a high dimensional feature space and

construct the optimum separating hyper-plane for each class. However, the drawbacks of these algorithms are 1) the fea-

tures are manually handcrafted. It is difficult to find effective features for each decision problem, which is time-consuming

and requires professional domain understandings. Feature selection and extraction are critical issues to the classification

performance. 2) There is complexity overhead to extract the features and to learn the optimum hyper-plane with on-line

learning mode, which is especially critical when the feature dimensions and the number of training samples are large. 3)

Generally, an optimal parameter determination is required to achieve good trade-off between complexity reduction and RD

degradation. 

4.3.3. End-to-end deep learning based schemes 

In recent years, the deep Neural Network (NN) [51] significantly advances prediction performance and has been widely

used in visual signal processing and pattern recognition. Due to the difficulties of finding effective features for conventional

machine learning based schemes, a number of researchers have devoted their efforts to exploring the end-to-end deep learn-

ing based mode decision schemes [69,70,50,55,114,112,34,35] . Liu et al. [69] applied the Convolutional Neural Network (CNN)
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to analyze the textures of source picture blocks, and then reduced the maximum number of CU modes in INTRA coding. The

QP was introduced in designing the CNN architecture by considering the effect of quantization to the coding costs. Besides,

a hardware CNN accelerator was developed for the INTRA CU size decision in [70] , where the network configured with only

two convolution layers, one pooling hidden layer and two full-connected layers. Instead of training different CNNs, the input

blocks 64 × 64, 32 × 32, 16 × 16 and 8 × 8 of raw pixels were normalized to be 8 × 8 matrices by using local averaging and

sub-sampling, such that they could share one CNN network. Laude et al. [50] explored to replace the RDO process with the

CNN classifier for INTRA prediction in each CU, and it was reported only 0.52% BDBR loss. However, complexity analysis was

not reported. Xu et al. proposed an early terminated hierarchical CNN to predict INTRA CU partition [55] and a hierarchical

Long- and Short-Term Memory (LSTM) network to predict the INTER CU mode [114] , where the temporal dependency was

further explored. The network shared the convolution layers for feature extraction to lower complexity and Full Connection

(FC) layers varied for different CU decisions. The proposed CNN and LSTM have millions of parameters and also require mil-

lions of additions and multiplications, which are very complex but not counted in overall complexity [114] . Similarly, in [46] ,

Kim et al. adopted Multilayer Perceptron (MLP) based NN to predict split or non-split for CU depth decision in HEVC INTER-

and INTRA-prediction. In [112] , Xu et al. proposed a hierarchical LSTM network based CU depth decision to predict the CTU

partition for H.264 to HEVC transcoding, where four dimensional handcrafted feature maps including MV, block partition,

bit and residue were input to the network. The latest JVET employs QTBT block partitioning structure in the under-going

VVC, which improves the coding efficiency at cost of five times or more computational complexity. To lower the INTRA

coding complexity of VVC, Jin et al. [34,35] modelled QTBT partition depth range as a 5-class classification problem and

applied CNN to predict the CU depth range in QTBT. It reported 43.69% complexity reduction with 0.77% BDBR increase, and

meanwhile the complexity overhead of CNN prediction was 4.51% of the encoder. In these works, high dimensional features

were learned from block of raw pixels ( e.g. , 32 × 32 or 64 × 64), shown as bottom five rows in Table 2 , only the information

within a block was used, traditional useful features, such as the spatial-temporal correlations and the RD cost, were not yet

considered. Small number of convolutional layers, e.g. , 2 to 5, were adopted for CNN to lower the complexity overhead. They

were proposed for INTRA coding and works on INTER coding are still rare. 

In the end-to-end deep learning based mode decision schemes, the raw pixels/blocks or low level features, such as mo-

tion and variance, can be used as input, then middle or high level-features are learned from supervised learning or back-

propagation. Finally, more powerful classifiers, such as fully connected MLP, were used to output the results. The advantage

of these works [69,70,50,55,114,112,34,35] are 1) thousands of features could be learned from data [114] and there is no

need to design professional hand-crafted features. 2) The prediction accuracy can be improved by increasing the number of

convolutional layers, i.e. , going deeper. Also, it is capable of solving complicated multi-class classification problems. 3) There

is plenty of labelled mode data for learning and robust learning models can be built. However, the disadvantages include

1) the end-to-end deep learning is extremely complex and sometimes the complexity is even higher than the encoder for

deep networks. Therefore, a good trade-off between the coding gain (complexity reduction or some other performances)

and complexity overhead is required. 2) Multiple learned networks are required in compressing different quality videos, i.e. ,

different QPs. 3) Over-fitting problem may exist in the end-to-end learning if the training data is insufficient or improp-

erly selected. 4) The optimal hyper-parameters for the deep NN shall be determined empirically, which is difficult to be

explained. 5) Only pixels in the current CU are now used in the learning network regardless the traditional useful features

information, such as spatial and temporal correlations. Up to now, external accelerators are required [70] which increases

the hardware cost. The coding performance of deep learning based scheme is only comparable to statistical approaches or

conventional machine learning based schemes, such that further investigations are essentially required. 

Reinforcement Learning (RL) [3] is another hot sub-branch of machine learning, which also gains much attention in both

industry and academia. It concerns agents to take actions in an environment by maximizing a cumulative reward, which

is different from conventional supervised and unsupervised learning. In [54] , Li et al. proposed an end-to-end actor-critic

RL based CU early termination scheme for HEVC. Fig. 8 shows the framework of RL based CU decision, where CrtNN and

ActNN denote critic NN and actor NN, respectively. It modeled the CU decision process as Markov Decision Process (MDP)

and regarded the CU encoding as environment, CU depth predictor as agent, split and non-split as actions and RD loss as

reward. The CU decision classifier was learned off-line from the CU decision trajectories based on end-to-end actor-critic

RL algorithm. Finally, the learned ActNN was incorporated in the video encoder to predict the CU partition. In fact, the

HEVC quad-tree CU structure is difficult to be modelled as the MDP. Also, five handcrafted features and single layer NNs

were used to reduce the complexity overhead, which may restrict the coding performance. It is a pioneer work on applying

RL to HEVC mode decision. Although the complexity reduction is only comparable to conventional machine learning based

scheme which is about 34.34% to 43.33%, RL has powerful potential capability of tackling more complicated decision and

control problems. Also, it has advantages of improving the network training with higher performance and flexibility, which

deserves further investigations. 

4.4. Discussions 

The existing learning based fast mode decision methods are mainly on optimizing the CU/PU mode decisions because the

CU/PU decisions are the outer-loops and possesses the majority of complexity. In addition, other inner-loop mode decisions

rely on the results of the CU/PU decisions. To exploit the advantages of machine learning algorithms and improve the coding

effectiveness, it is necessary to bridge the gap between coding algorithms and machine learning algorithms [130] . It is easy
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Fig. 8. RL based fast CU mode decision [54] . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

to formulate CU/PU decision process to fit the binary-class classification that could be well solved by learning algorithms,

such as SVM, decision tree and Bayes decision rules. On the contrary, for some modules with much more candidate modes,

such as the INTRA angular prediction [123] and ME, it has more difficulties in problem modelling and solving. In addition,

their complexities are low for each mode, which reduces the potential complexity reduction in fast mode decision. 

With the development of video coding technologies, more refined modes are introduced to achieve higher compression

efficiency. For example, the number of INTRA modes increases to 67; more flexible block partitioning structure, e.g. QTBTTT,

is enabled; available CU size increases to 256 × 256 in the VVC [95] . In this case, the coding complexity increases expo-

nentially, and low complexity optimization becomes more critical. Meanwhile, each mode decision problem in VVC is more

complicated. Therefore, data-driven mode decision and advanced learning tools, such as feed-forward CNN, deep RL [3] and

deep NN, are possible good solutions and worthy to be investigated further for these complicated mode decision problems.

In addition, the multiple different loops or decision layers can be optimized jointly to minimize the coding complexity. 

5. Learning based high efficiency coding optimization 

The current video coding standards comply with a block-based hybrid framework, which includes three major compo-

nents: the predictive coding, transform coding and entropy coding, as shown in Fig. 9 . The predictive coding exploits the

view-spatial-temporal correlations of video signal, which are the major part of video redundancies. The transform coding

adopts the transform to compact the energy in frequency domain, then larger scale is used to quantize the insensitive fre-

quencies of HVS, such as high frequency, in lossy coding. Finally, the entropy coding is used to reduce the statistical entropy

redundancies of the signals. In addition, the enhancement algorithms, including pre/post-processing and in-loop filtering,

are adopted to improve the quality of the reconstructed video. In this section, we present the learning based high efficiency

coding optimization on the above four parts. Table 3 summarizes problem formulation and coding performances for learning

based high efficiency coding, where the corresponding optimization modules are shown in Fig. 9 . 
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Table 3 

Problem formulation and coding performances for learning based high efficiency coding optimization. 

Categories Problem Formulation Modules Learning Tools BDBR ∗ (%) Complexity ∗(times) 

AI LDP LDB RA ENC DEC 

Predictive Coding Predict the spatial and temporal pixel 

values or patterns, up-sampling; 

predict MVs, mode index or patterns, 

i.e. , (1) in Fig. 9 . 

Super-resolution [17] Sparse coding / −4.57 / / 

Up-sampling [57] CNN −5.5 / 7.47 250.21 

Fractional pixel interpolation [65] GVCNN / −2.2 −1.2 −0.9 6.29 1548.6 

INTRA prediction [52] FC −3.4 / 91.47 230.11 

INTRA prediction [138] GAN −6.75 / 7.0 160 

INTER prediction [137] CNN / / −1.6 −3.0 1.64 44.7 

Transform Coding Find the optimal transform and 

quantization kernels to reduce spatial, 

perceptual redundancies or energy 

compaction for residual data, i.e. , (2). 

Transform Index [6] CNN + FC −0.2 / / 

Transform basis [78] Annealed learning −2.10 / −1.40 / 

Transform [81] # SVM / / 

Transform basis # [64] CNN + FC / / 

Entropy Coding Exploit the probability distribution 

and statistical redundancies to 

approaching the entropy, i.e. , (3). 

Binarization [93] CNN + FC −0.33 to −1.13 / / 

Enhance-ment Image restoration, filtering, de-noising, 

residue prediction, i.e. , (4) in Fig. 9 . 

In-loop filter [74] IFCNN −4.8 −1.9 / −2.6 / / 

In-loop filter [133] RHCNN / −3.38 −4.26 / < 3 / 

In-loop filter [32] CNN −4.2 −4.7 −6.0 −5.9 2.14 156.1 

In-loop filter [56] DenseNet / / / −6.59 / 

Post-processing [19] VRCNN −4.6 / / / 

Reconstruction [122] MRRNN −6.7 −7.8 −7.6 / 2.10 240.21 

∗ The BDBR and complexity are average values which are highly correlated with the test sequences, settings and reference models. 
# for image coding. 



Y. Zhang, S. Kwong and S. Wang / Information Sciences 506 (2020) 395–423 409 

Fig. 9. Learning optimized coding modules for higher compression efficiency [95] . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.1. Learning based predictive coding 

Due to high spatial fidelity and capturing frame rate, 2D video contents are strongly correlated in spatial and temporal

domains. Predictive coding, i.e. , INTRA and INTER predictions, is developed to remove the spatial and temporal redundancies.

Only a small number of pattern vectors and the difference between original and predicted data are encoded and transmitted.

Therefore, the basic problem of predictive coding can be formulated as finding a mapping function f () to minimize the

difference between the original ( X O ) and predicted blocks ( X P ), which is presented as { 

f∗ = arg min 

f 
‖ 

X O − X P ‖ p,q , s.t. r < r T 

X P = f 
(

ˆ X t , ̂  X t−k 

) , (4)

where || · | | p ,q is L p,q norm operation. It represents Euclidean norm when q and p are 2 and 1, or Frobenius norm when q and

p are 2; r is the coding bit indicating the optimal parameters or side information of mapping function f (), r T is a target bit.
ˆ X t and 

ˆ X t−k are reconstructed spatial and temporal blocks with respect to X O in time t and t-k . Note that the transform and

quantization are not yet considered in Eq. 4 . It is to find the optimal mapping function f ∗() to predict the block X O from the

spatial or temporal neighboring blocks by minimizing their difference. Fig. 10 shows typical three key cases in learning based

predictive video coding, which include interpolation, INTRA and INTER predictions. Fig. 10 (a) is the spatial interpolation and

up-sampling prediction case, in which the learned models are used to predict the neighboring or sub-pixels (blue, red and

green dots) from the source pixels (yellow). Finally, source and predicted pixels comprise the interpolated image. Fig. 10 (b)

shows the spatial INTRA prediction, where the learned models are used to predicted the white blocks with the surrounded

spatial neighboring pixels (yellow ones). Fig. 10 (c) is the INTER prediction from temporal neighboring blocks, which is a

temporal interpolation. 

Sparse dictionary learning (DL) is able to find a sparse representation of input data in the form of a linear combination of

multiple basic elements, which are also denoted as atoms in a dictionary. It has been widely used in image processing for

super-resolution/interpolation [100] , de-noising and reconstruction [98] . INTER and INTRA predictive coding of the hybrid

coding framework can be formulated as an up-sampling problem, in which blocks are down-sampled in predictive coding

for low bit rate and then up-sampled to its original resolution at decoder for high visual quality reconstruction. The up-

sampling problem can be solved by training over-complete dictionaries to improve the reconstruction quality from the low-

quality visual data. In [109] , Xiong et al. proposed a sparse spatio-temporal representation for reconstruction of frames. Then,

online learning [17] had been utilized to improve the convergence rate of the dictionary learning. Furthermore, multi-scale

[99] and progressive dictionary learnings [18] were used to extensively learn spatio-temporal dictionaries, which exploited

the inter-layer correlations between base and enhancement layers for quality, spatial and temporal scalable video coding. In
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Fig. 10. Three key cases in learning based predictive coding. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

addition, the up-sampling problem was also exploited by using the latest CNN [21,44,57,40] . In [21] , Dong et al. proposed an

image Super-Resolution CNN (SRCNN), which learned an end-to-end mapping between the low and high-resolution images

by using a lightweight structured CNN. In [44] , Kim et al. increased the network depth to 20 layers inspired by the VGG-net

and proposed a very deep convolutional network for image super-resolution, denoted as VDSR. In [57] , Li et al. proposed

CNN-based block up-sampling scheme for INTRA frame coding, which included block-wise up-sampling in INTRA coding

loop and frame-wise up-sampling to refine block boundaries. Based on the down/up-sampling based coding framework, CNN

was trained on both the spatial and the temporal dimensions of compressed videos to enhance their spatial resolution [40] .

Figs. 11 and 12 show visual quality and PSNR comparisons on the interpolation results from conventional bi-cubic, sparse

coding, SRCNN and VDSR. We can observe that the learning based schemes can significantly improve the quality of super-

resolved images with different contents, which is about 2.27 dB to 7.06 dB. CNN based schemes [21,44] are able to achieve

better results. Since the sub-pixel ME and Motion Compensation (MC) requires sub-pixel interpolation, CNN was adopted

to fractional pixel MC [116,117,65] by predicting fractional-pixel from the integer-pixel. In [117] , a Fractional-pixel Reference

generation CNN (FRCNN) was proposed to generate the reference image for fractional-pixel ME in HEVC, where multiple

specified FRCNNs were trained for interpolating the fractional pixels at different locations. It achieved 1.3% to 3.9% BDBR

gain on average while the complexities were increased to 6.94 times for encoder and 80.77 times for decoder, respectively.

Liu et al. [65] proposed a one-for-all fractional interpolation method based on a deeper and Grouped Variation CNN (GVCNN)

to improve the interpolation generality on handling different QPs and sub-pixel locations. It achieved 0.9%, 1.2% and 2.2%

average BDBR gain for RA, LDB, and LDP configurations. However, the complexities of the encoder and decoder increased to

6.29 and 1548.58 times of those of the original HEVC, which seems unaffordable. 
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Fig. 11. Visual examples on interpolation with 2 and 4 times scales for HorseRide. (a) Original image, (b)-(i) enlarged region in (a), (b)-(e) are interpolated 

with scale X2, (f)-(i) are interpolated with scale X4, (b)(f) Conventional, (c)(g) Sparse coding [100] , (d)(h)SRCNN [21] , (e)(i) VDSR [44] . 

Fig. 12. Visual examples on interpolation with 2 and 4 times scales for BasketballDrill. (a) Original image, (b)-(i) enlarged region in (a), (b)-(e) are inter- 

polated with scale X2, (f)-(i) are interpolated with scale X4, (b)(f) Conventional, (c)(g) Sparse coding [100] , (d)(h)SRCNN [21] , (e)(i) VDSR [44] . 

Fig. 13. Architecture of GAN based INTRA prediction [138] . 

 

 

 

 

 

 

 

 

 

 

 

 

 

Besides the up-sampling problem, the predictive coding can also be modelled as predicting the spatial and temporal

pixel values or patterns, as shown in Fig. 10 (b) and (c). Li et al. [52] proposed an efficient multiple lines based prediction

method, in which more reference lines were utilized besides the nearest neighboring row and column. A fully connected

network was adopted to learn an end-to-end mapping from neighboring reconstructed pixels to the current block [53] ,

where more contextual information of the current block was fed into the fully connected network. One limitation is that

the networks shall be trained for each block size. In [138] , predicting the pixels from neighboring CUs in the INTRA predic-

tion was modeled as an inpainting problem and accomplished with a Generative Adversarial Network (GAN) model, whose

architecture is shown in Fig. 13 . The right bottom CTU in the mask was about to be predicted from the left, above and

left-above reconstructed CTUs. The global and local discriminators were used to improve learning the INTRA prediction gen-

erator. Additional 35 INTRA mode candidates were generated for each CTU and incorporated in encoder and decoder for RD

comparison in RDO process. Fig. 14 shows INTRA prediction examples from GAN based and conventional angular prediction

in HEVC for 64 × 64 CU, where SAD is measured. The GAN based scheme has better prediction results in terms of SAD and

visual quality. About 6.6% and 6.75% BDBR gains on average were achieved for HEVC and VVC, respectively, which were very
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Fig. 14. Examples of Intra prediction results [138] . (a) GAN based INTRA prediction. (b) Angular based INTRA prediction in HEVC. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

promising. However, the encoding and decoding complexities increased significantly, which were 7.0 and 160 times on aver-

age for HEVC and 2.5 and 257 times on average for VVC, respectively. Chen et al. [9] proposed the concept of VoxelCNN in

modelling spatio-temporal coherence for predictive coding, which was then included in ME and hybrid prediction networks.

In addition, bidirectional RNN was studied to exploit the temporal information for prediction in video compression [47] . By

utilizing more pixel information and advanced prediction, the coding efficiency has been improved for INTRA frames. Zhao

et al. [137] employed a CNN to infer the predictive blocks for INTER bi-prediction, while in [136] the reference images were

improved to enhance the INTER prediction accuracy. The learning based high efficiency predictive coding for temporal frame

is at the initial stage and requires further investigations. 

5.2. Learning based transform coding 

The transform coding aims to transform an n × n block residual pixels X into n × n coefficients Y with transform basis C ,

where Y is sparse representation of X by removing the spatial correlations or higher “energy compaction”. The transform

can be presented as 

Y = CX C 

T , (5) 

where C 

T is the a transpose matrix of C . After the transform, the coefficients Y is quantized for lossy coding with a quanti-

zation matrix, which is given by 

Z = Q ( Y ) , (6) 

where Q () represents the quantization process for a block. Z is a matrix of quantized coefficients for entropy coding. The

reconstructed pixel values X 

′ after inverse quantization and inverse transform are 

X 

′ = D Q 

−1 ( Z ) D 

T , (7) 

where D is the inverse transform core, which is usually correlated with C 

T for symmetric transform, Q 

−1 () is an inverse

quantization . 

The optimization problem for the transform coding aims to find the optimal transform core C and quantization Q () to

minimize the distortion between X and X 

′ subject to limited coding bits of Z , i.e., r ( Z ), and overhead bits r c , which can be

formulated as 

{ C 

∗, Q 

∗} = argmin 

C ,Q 

|| X − X 

′ | | p,q , s.t.r ( Z ) + r c ≤ r T , (8) 

where || · | | p ,q is the L p,q norm. r c is the number of overhead bits indicating transform basis and quantization, r T is the

target bit. It is find the optimal transform kernel C 

∗ and quantization Q 

∗ to represent X in a sparser manner, which suits a

dimension reduction problem. 

Karhunen-Loève Transform (KLT) is an ideal linear transform that aims to project pixel data onto the eigenvectors. It picks

basis vectors one by one by minimizing the distance of the data from the subspace they span. The KLT is data-dependent

and source data is needed to estimate the transform core. Then, the core is required to be transmitted to the decoder,

which increases the overhead bit r c . Discrete Cosine Transform (DCT) is a Fourier-related transform using only real numbers,

which approaches the KLT’s performance for Markov processes. It has been widely used in JPEG and the first generation of

coding standards because of the fast decomposition for pipeline implementation and strong energy compaction property. In

addition, transform basis is fixed. Based on the DCT, 4 × 4 Integer Cosine Transform (ICT) was proposed in H.264/AVC by
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changing the DCT float-point operations to integer [108] . To improve the energy compaction in transforming larger blocks,

Hardmard transform jointly worked with the 4 × 4 ICT for 16 × 16 block. In HEVC, different TU sizes (4 × 4, 8 × 8, 16 × 16,

and 32 × 32) and transform cores were proposed based on DCT. The conventional DCT transform assumes the stationary

Gaussian distributed signal to obtain the optimal transform, which is not always the optimal for the residue from INTRA

prediction. To further improve the performance, content based transform, such as orientation adaptive transform [76] and

Mode Dependent Directional Transform (MDDT) [2] , were proposed to transform different types of data sources, such as

different INTRA prediction modes. The Adaptive Multiple Transform (AMT) [6] was introduced in VVC by testing a set of

transform cores in the coding loop and the optimal basis was selected based on the RD cost comparison. Then, an index of

the transform basis was explicitly transmitted to the decoder, which could also be improved with learning based prediction

[77] . 

In [85] , the MDDT algorithm was modified by introducing l 0 -norm regularized optimization in order to obtain robust

learning algorithm and enforce the sparsity-constraint in the optimization process. Similarly, in [78] , the residual blocks

were classified into a number of classes and transformed individually. Then, an annealing based learning technique was

adopted to improve the performance. These algorithms are similar to the AMT, and the major difference is using the learn-

ing algorithm to predict the best transform basis C and reduce the overhead index bit r c . A number of alternative attempts

[37,38,81,64] explored to transform the residue in a sparser or more effective manner. In [37] , a novel dictionary learning

based transform was proposed, in which residues were transformed to the number of transformed coefficients for dictio-

nary construction. In [38] , a cascaded sparse/DCT two-layer representation was proposed for coding prediction residues in

HEVC, in which a dictionary was trained to present the patterns of structured residual signals for low bit rates and DCT

representation was cascaded to reduce overhead bits at higher bit rates. In [81] , the SVM was used to approximate the DCT

coefficients, in which the data was modelled within the given level of accuracy based on the property that SVM selected

a limited number of samples in training, noted as supported vectors. It was applied for image coding and outperformed

the JPEG. In [64] , CNN was used to simulate DCT-like transform, in which CNN based transform was used to non-linearly

map the block pixels into sparse coefficients and a CNN based inverse transform was used to map the coefficients to block

pixels. Three convolutional layers and one FC layer were used for CNN training. Distortion and bit rate were considered in

the loss function for network training. Considerable improvements over JPEG were reported at low bit rate. However, the

existing CNN networks were processed with raw block pixels, fixed block size and image coding, further integrations and

investigations will be interesting. 

Kuo et al. proposed a feed-forward data-driven subspace approximation with augmented kernels transform, shortened as

Saak transform [48] , in which the kernels were derived from the second-order statistics of inputs. Besides, an adjusted bias

was added to annihilate activation’s nonlinearity, which is Saab transform [49] . The Saak and Saab transforms are variants

of Principal Component Analysis (PCA) for dimension reduction. Data labels and back-propagation are not required. The Saak

and Saab transforms have been successfully tested to image classification and forgeries and achieved promising results. Their

applications to video coding will be interesting and worthy investigations. 

The transform coding is a type of dimension reduction problem following predictive coding. Data dependent transform is

a promising trend. Up to now, it has been proved that the learning based transform coding outperforms the JPEG and INTRA

coding. However, more investigations on their effectiveness to INTER coding are still required. As such, how to improve

the effectiveness and integrate the learning based transform coding with quantization and predictive coding will be open

problems in the near future. Meanwhile, the genericity versus specificity of the learning based transform is required to be

considered. 

5.3. Learning based enhancement algorithms 

A distorted image or block ( y ) can be presented as 

y = Hx + ε , (9)

where x is the original image/block, H is the degradation matrix, ε is an additive noise. The distortion in (9) may have

different forms as the matrix H changes. To recover the original image x from different types of distortions, such as blocking,

ringing and blur artifacts, the general enhancement problem is to recover the optimum x ∗ by 

x 

∗ = min 

x 
‖ 

y − Hx ‖ q,p + λ	(x ) , (10)

where ‖ y − Hx ‖ q,p is the fidelity term of L q,p norm, 	( x ) is the constraint term to limit the optimum solutions range, and

λ is a parameter for trade-off. If H is an identity matrix, y only contains the additive noise and (10) becomes an image

de-noising problem; if H is the blurring operator, (10) denotes a de-blurring problem; If H is the down-sampling operator

or a composite operator combining blurring and down-sampling, (10) becomes an image super resolution problem; If H is

a sampling matrix or a mask, (10) represents the image inpainting problem. The better the recovered x , the better coding

performance may achieve when the enhancement is applied to video coding. Based on the types of image optimization

problem and the modules applied in video coding, the enhancement algorithms can be divided into two categories, i.e.

in-loop filtering and pre-/post-processing. 
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Fig. 15. Framework of MIF algorithm [56] . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The first category focuses on the in-loop filtering module of the codec, where the filtered blocks will be used as reference

for subsequent blocks in the encoding or decoding processes. In [12] , a self-learning based image de-blocking framework was

proposed, where the de-blocking was formulated as a Morphological Component Analysis (MCA) based image decomposition

task. In this scheme, the low and high-frequency parts were decomposed by using Block Matching and 3D (BM3D) filtering

algorithm. Park et al. [74] presented an In-loop Filtering using CNN (IFCNN) to improve the quality of reconstructed image, in

which the signaling bits were not required because using the same trained weights in both encoders and decoder. To further

improve the coding efficiency, a Residual Highway CNN (RHCNN) was proposed for in-loop filtering [133] , where the RHCNN

consists of several residual highway units and convolutional layers. The RHCNN was employed as a high-dimensional filter to

enhance the quality of reconstructed frames besides the de-blocking and Sample Adaptive Offset (SAO) filters in HEVC, which

reduces bit rate 3.38% on average at cost of about 3 times encoding complexity. Jia et al. [32] designed a multi-dimensional

CNN model for loop filtering and content-aware multi-model CNN was performed for different regions. It achieves 4.2% to

6.0% BDBR gains for INTRA and INTER configurations while the encoding and decoding complexities were increased to 2.14

times and 156.10 times. In addition, Li et al. [56] proposed a Multi-frame In-loop Filter (MIF) scheme for HEVC based on

DenseNet, in which multiple successive temporal frames were jointly used to enhance the filtering performance. In addition,

there is a mode selection between conventional SAO, in-loop filter and the MIF, as shown in Fig. 15 . These schemes enhanced

the quality of the reconstructed blocks in the loop of coding process, which not only improved the quality of reconstructed

images, but also improved the coding efficiency when the enhanced image/block was used as reference for subsequent

INTRA or INTER prediction. These in-loop enhancements may have sequential data dependency among blocks, which has

negative impacts on the parallelism. In addition, the in-loop enhancement will be recalled for many times in RDO, which

increases the coding and decoding complexity dramatically. 

The other category of works is pre-/post-processing algorithm for image enhancement. In [19] , a CNN-based post-

processing algorithm for HEVC was presented, in which a Variable filter size Residue-learning CNN (VRCNN) was adopted

to improve the coding performance and accelerate network training. Different from the conventional schemes on optimiz-

ing the encoder, Wang et al. [105] focused on improving the video quality at the decoder side, where a very deep CNN

was applied to eliminate the distortions and enhanced the quality of HEVC-compressed videos. At the receiver side, the

low quality face regions were recovered with the face patches in the database. A deep CNN was used to mimic the reverse

function of video coding in [61] , which established an end-to-end mapping from the decoded frame to an enhanced one.

Zhang et al. [134] proposed an Adaptive Residual Network (ARN) for high-quality image restoration in video coding, where

short-cuts were used to reduce the model complexity. In [140] , the CNN models were used to improve the quality of synthe-

sized images, which was applied to both in-loop View Synthesis Optimization (VSO) in 3D-HEVC encoder and the out-loop

reconstruction at the decoder. In [122] , a novel quality enhancement method was proposed by using a Multi-reconstruction

Recurrent Residual Network (MRRN), where a recursive residual structure was designed to capture the multi-scale similarity

of compression artifacts. Compared with the in-loop filter, pre-/post-processing module will be conducted in the reconstruc-

tion phase out of the coding loop. They can be used for both encoder and decoder, or only at the decoder side. In addition,

the data dependency is weaker since it is out of the coding loop, which facilitates the block-wise parallelism in video cod-

ing. However, the coding gains are lower than those of in-loop schemes. In addition, due to various distortion levels caused

by quantization, multiple learning models shall be trained for different QPs [133,56,19,122] , which could be improved. 
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5.4. Discussions 

The key to the high efficiency coding is predicting the sample values, patterns or coefficients for de-correlation. Dictio-

nary learning and deep learning are two powerful tools that can be exploited to improve the prediction and the coding

efficiency. However, deep learning based optimizations are in fact difficult to be theoretically explained and reproduced,

even with the same training data and parameter settings. In addition, the related learning based works mainly focused on

the optimizations for prediction, enhancement and transform coding. Entropy coding is rarely addressed. Only one recent

work focused on entropy coding [93] , where the NN was used to predict the probability distribution of the syntax INTRA

modes for multi-level arithmetic engine. It saved about 0.33% and 1.13% bit rate under different settings. The major reason

is that it is more difficult to model the entropy coding problem and fully exploit the advantages of learning algorithms. 

The learning based schemes, especially those using the deep learning, were able to achieve promising coding gains but

caused much more complexity overhead and hardware cost, which increased multiple times for the encoder and hundreds or

thousands times for the decoder although the GPU acceleration was enabled [65,138] . Low complexity or low cost adaptation

for these learning based schemes is highly desired for standardizations and practical usage. Since videos are not only used

for viewing, but may also be used for recognition tasks, such as face recognition, robotic vision or retrieval, in addition

to maintaining high visual quality, key features correlated with recognition tasks shall be also preserved [20] . In this case,

coding optimization by considering multi-objectives and features deserves future investigations. 

A number of researchers are also seeking the possibility of proposing new learning based coding framework that differs

from the hybrid block based coding and adapts to different environments, such as distributed coding for mobile or cloud

computing environments [94] . In addition to applying the CNN to existing coding modules, new end-to-end compression

framework [33] was also exploited. The coding efficiency of these coding algorithms was reported better than INTRA coding

and there is a large potential to achieve higher gain. 

6. Learning based visual quality assessment (VQA) 

The objective of video coding is to minimize the distortion ( D ) or maximize the quality ( Q ) subject to bit rate ( R ) con-

straints, which can be presented as 

min D, s.t.R ≤ R T , (11)

where R T is a target bit rate. Nowadays, the distortion D is still measured with MSE while the quality Q is measured with

PSNR, which are based on the pixel-by-pixel difference between the original and reconstructed images. PSNR and MSE

are simple but can hardly reflect the real perceived quality of HVS. To fully exploit the perceptual redundancies in videos,

perceptual video encoder is a possible tentative solution, to which developing a perceptual quality metric Q that is consistent

with HVS becomes the key. Up to now, many Visual Quality Assessment (VQA) metrics have been developed, such as SSIM

[106] , FSIM [124] , Multi-Scale SSIM (MS-SSIM) [107] , MOVIE [84] and so on. However, there is still no such perceptual

quality metric that is universally accepted as compared with PSNR. HVS is a complicated non-linear system. Although many

important perceptual factors are revealed in psychological and physiological perspectives, the understandings on HVS and

human brain are still very limited and under explorations. It is challenging to develop an effective visual quality metric

consistent with human perception. Machine learning provides new opportunities by mining visual factors from data and

achieving data-driven solutions. In this section, VQAs are categorized into two major classes, subjective and objective VQAs,

and analyzed in detail. 

6.1. Subjective VQA and labelled datasets 

In subjective VQA, a group of subjects are invited to give scores on the quality of a series of distorted images or videos

under given procedures and testing environments. Then, the processed Mean Opinion Score (MOS) or Differential MOS

(DMOS) from the subjects is regarded as the ground truth quality, which reflects the visual responses of HVS. To make

the subjective VQA more rigid and rational, Video Quality Experts Group (VQEG) established in 1997 by the ITU-T and ITU-R

focus on the subjective and objective visual quality studies. A series of recommendations were released to identify subjective

testing methods, procedures and environments, such as ITU-R BT.500 [29] and BT.710 [30] for T V and HDT V images, BT.1788

[79] for video quality, BT.1438 [28] for stereoscopic images, and BT.2021 [80] for 3D video systems. 

There are two major contributions of subjective quality assessment experiments. Firstly, they facilitate better under-

standing of the HVS mechanism and reveal the new visual properties. For example, Contrast Sensitive Function (CSF), visual

attention and ROI, visual sensitivity, JND, depth perception, visual masking effects, binocular fusion and rivalry, etc. , had

been investigated in last few decades. They serve as the groundwork for the feature and model design towards the objec-

tive quality metrics. The other contribution is labelling the quality scores of distorted image/videos, which will be the data

sources and ground truth labels for designing and verifying the objective quality metrics. 

Generally, one dataset consists of a number of source images/videos with diverse contents and spatial-temporal charac-

teristics, denoted as N . Then, they are distorted with a mount of different types of distortions (such as compression, blur,

or white noise) and degrees, denoted by P and Q , respectively. The total number of distorted image/videos is N × P × Q. Each
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Fig. 16. Scales of distorted images/videos in typical VQA datasets. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

of them will be viewed and scored by a number of human subjects, e.g. , 35, and the statistical mean quality after exclud-

ing outliers will be the quality label of one distorted image/video. Fig. 16 shows the number of distorted image/videos in

typical VQA datasets since 20 0 0, which includes datasets for natural image, Screen Content Image (SCI), stereoscopic image

and videos. We can observe that the largest TID2013 dataset has around 30 0 0 labelled images, and most image datasets

are less than 10 0 0. In addition, the video datasets are even less and their labelled data is only 100 to 150, which is a very

small number. Although more and more datasets are labelled and released in recent years, they can hardly be used jointly

due to different properties (SD/HD, 2D/3D, image/video, and SCI/natural contents), distortions, type of scales (quality/depth,

MOS/DMOS, normalization) and settings (displays, testing environments, viewing conditions, procedures). In addition, the 

image or video MOSs are usually obtained from mean values of discrete five-grade scale quality 5 to 1, corresponding to

“Excellent”, “Good”, “Fair”, “Poor” and “Bad”, which may not be accurate enough in measuring the coding distortion levels,

e.g. , 51 for HEVC and 100 for JPEG in compression. Fine-grained subjective quality assessment [126] and datasets [104,62] are

an interesting and rising research topic, however, it is much more laborious than the coarse-grained. 

In fact, it is laborious, expensive and time-consuming to perform the subjective VQA labeling large number of images

or videos [92] . Nevertheless, the subjective quality cannot be applied to other unknown videos and in-loop visual signal

processing. Therefore, objective quality metrics are desired. As for designing an objective quality metric, the understandings

of visual perception mechanism are key issues to develop effective features. Also, the dataset will be important data source

for training, validating and testing the learning based VQA. Creating large and fine-grained datasets [126,92] is challenging

but vital necessary in developing reliable and capable VQA models. 

6.2. Machine learning based VQA 

The other category is the objective quality assessment, which estimates the quality scores of distorted videos. According

to the availability of the reference, VQA metrics can be categorized as Full Reference (FR), Reduced Reference (RR), and

No Reference (NR). FR requires a ‘perfect’ quality image/video, i.e., the reference is fully available, RR needs partial side

information and NR doesn’t have any reference information. MSE and PSNR are FR VQA metrics, which have been widely

used in video coding due to their simplicity. They are straightforward but not accuracy enough to present the perceived

quality in HVS. With more understandings on the HVS, many featured VQAs have been developed to represent distortion in

images and videos. 

According to the feature and fusion algorithms, VQA metrics can be classified into four categories: handcrafted feature

based, handcrafted feature plus learning based, feature learning based and end-to-end learning based approaches, as shown

in Fig. 17 . Table 4 summarizes the features and learning algorithms for typical VQA metrics in the four types. In the first

category, the PSNR and MSE adopted the squared pixel difference between distorted and reference images as the only fea-

ture. SSIM [106] introduced luminance, contrast, and structure comparison and combined the three indices to assess image

quality. In addition, Visual Information Fidelity (VIF) [87] and gradient similarity [63] were further considered. These are

image quality metrics. A Video Quality Metric (VQM) [75] was proposed by adopting seven key features, including spatial

information loss, shift of edges from/to diagonal orientation, spread of chroma, spatial gain from enhancement, temporal

impairments, and localized color impairments. They were then combined with weighted summation and weights were em-

pirically determined. Seshadrinathan et al. proposed MOtion-based Video Integrity Evaluation index (MOVIE) [84] for video

quality assessment, in which spatial quality was estimated using the Gabor coefficients and then tuned with motion infor-
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Fig. 17. The pipeline of learning based VQA prediction. 

Table 4 

Features and learning methods of some typical VQA metrics. 

Types Metrics Key Features Learning 

1st PSNR Squared pixel difference \ 
SSIM [106] /MSSIM [107] Luminance, contrast, structure \ 
VIF [87] Visual information fidelity \ 
VQM [75] Spatial loss, shift of edges from/to diagonal orientation, 

chroma spread, spatial gain, temporal impairments, localized 

color impairments 

\ 

2nd Lin [60] Gabor SVR 

Xue [115] GM, LoG SVR 

DIIVINE [71] Wavelet coefficients, GGD SVM,SVR 

Vega [102] Bitrate, multiple frames, video motion, noise ratio, scene 

complexity, blur mean, blockiness, motion intensity 

RBM 

Yang [119] HoG of wavelet coefficients, magnitude, variance and entropy, 

depth perception map 

DBN 

VMAF [58] AN-SNR, DLM, VIF, MCPD SVM 

3rd Shao [86] Dictionary learning \ 
Zhang [135] Dictionary learning \ 
CORNIA [120] Visual codebook SVM 

4th [39,7,24,127,4,118,41,43,45] CNN/RNN 
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mation. Perceptually weighted MSE [27] was used in pooling by considering different im portance of image/video regions.

The working pipeline of this category VQA metrics is extracting handcrafted features and empirically fused for quality pre-

diction, as shown in Fig. 17 (a). They are usually simple and straightforward, but are hard to adapt to various image/video

contents. As more brain-inspired features are disclosed, incorporating more features can improve the prediction accuracy

and adaptation. However, it becomes more and more challenging to fuse high dimensional features. 

In the second category, the machine learning algorithm has been introduced to address the problem of fusing multiple

features. Lin et al. [60] developed a FR quality metric for stereoscopic images. It extracted Gabor features for left-view and

right-view, which were combined together via binocular rivalry model. Finally, it learned a mapping function between the

features and quality score by using Support Vector Regression (SVR). Xue et al. [115] exploited Gradient Magnitude (GM)

and Laplacian of Gaussian (LoG), and then learned a regression model using SVR too. Moorthy et al. [71] developed a two-

step framework for NR image quality assessment named DIIVINE. It firstly classified image distortion types by using SVM

based on wavelet coefficients and Generalized Gaussian Distribution (GGD), and then predicted image quality score using

SVR. Literature [102] proposed a learning based RR video quality assessment for live streaming, in which unsupervised

Restricted Boltzmann Machines (RBMs) were learned at the server side and NR measurements were performed at the client

side by using transmitted RBM models. Yang et al. [119] applied Deep Belief Network (DBN) for blind metric evaluating

stereo images by fusing 2D handcrafted features and 3D depth perception map. Li et al. [58] proposed Video Multi-Method

Assessment Fusion (VMAF) algorithm that predicted the quality score by fusing four methods, including Anti-noise SNR

(AN-SNR), Detail Loss Measure (DLM), VIF and Mean Co-Located Pixel Difference (MCPD), with a SVM classifier. It claimed

better reflection on human perception of video quality than other widely used objective metrics and has been used in

industry, such as video streaming in Netflix. The work pipeline of these works is shown in Fig. 17 (b). Firstly, the handcrafted

features are extracted and trainable learning algorithms are used to map features to a final quality score. The performance of

these metrics highly relies on the effectiveness of the extracted handcrafted features. Due to limited labeled data for model

training, over-fitting may easily occur, and the effectiveness on cross-database validation needs to be further improved. The

available video datasets are even less and few literatures are done on learning based VQA for videos. 

The third category is feature learning based approaches, in which the features are learned from data. They attempt to

solve the difficulties on extracting effective f eatures, as shown in Fig. 17 (c). Shao et al. [86] learned dictionaries to represent

the latent structure of images by using a set of basis vectors, i.e., learning the representative features. Then, quality indices

generated from using sparse coefficient vectors were fused. Ye et al. [120] introduced an unsupervised learning framework,

called CORNIA, for NR image quality assessment, in which a visual codebook was learned from unlabeled image patches and

then the quality was predicted using supervised linear SVM. Zhang et al. [135] restructured video with plurality of temporal

layers and learned temporal dictionaries to represent the flickering artifacts in synthesized 3D video. They are capable of

learning more discriminative features beyond the handcrafted features. Meanwhile, features are learned in representing

images/videos and the quality labels are not required. However, higher level features, such as sparse coefficient vectors

[86] , phase and amplitude similarities [135] , shall also be manually designed. This process can be regarded as a feature

transformation. 

With the breakthrough of deep learning in image recognition, researchers have tried to apply deep learning to VQA re-

cently [39,7,24,127,4,118,41,43,45] , i.e., the fourth category as shown in Fig. 17 (d). Kang et al. [39] employed CNN in general-

purpose NR image quality assessment, which combined feature learning and quality regression as a holistic and end-to-end

way. Bosse et al. [7] adopted the Siamese network in image quality assessment, which was trained for FR but could be used

for NR by extracting part of the network. Fan et al. [24] proposed a general-purpose NR image quality assessment based on

multi-expert CNN. It classified distortion types via CNN and trained specific expert-CNN for each distortion type. Then, the

outputs of each expert-CNN were aggregated to be the final image quality score. Zhang et al. [127] proposed an FR video

quality assessment by employing transfer learning with CNN. They pre-trained the network on distorted images and then

transferred it to videos due to small-scale video quality database. Bampis et al. [4] formulated the continuous-time video

quality prediction as a time-series prediction problem and predicted the quality score by using RNNs. Yan et al. [118] pro-

posed a two-stream CNN based NR image quality predictor where one stream focused on the image intensity and the other

learned structure features from gradient. Kim et al. [41] proposed a CNN based NR quality assessment for omnidirectional

image. It first predicted quality score for each patch and aggregated the scores together as score of the omnidirectional

image. Then a discriminator was learned using adversarial learning to assess the predicted score with the help of human

perception guide. These end-to-end learning based VQA metrics can learn features and mapping function from raw visual

data automatically and simultaneously. Also, these end-to-end schemes can significantly improve the prediction performance

by fitting the MOS data well. However, the HVS mechanisms behind are difficult to be explained and the learned knowledge

is not transferable or applicable to other tasks if without re-training. 

In addition, one of the most challenging issues is the deep learning based approaches require very large amount of

labelled data for training [127,43] . The learning model may be difficult to handle various contents and distortions if the

training dataset is not sufficient or fails to adequately represent real world videos [92] . Besides, Shortage of data may prob-

ably cause serious over-fitting problem. In fact, only very limited labelled images are available in quality assessment and it

is even more critical for video datasets as mentioned in Section 6.1 . One tentative solution is data augmentation by labeling

the quality of each patch [24] , instead of an entire image. This augmentation is usually under the assumption that all the

patches in an image or video are with the same quality, which may not hold true. Another attempt is using an existing

metric to generate sufficient quality scores for training [45] . It may also be bias since the deep NN is essentially simulating
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an existing metric instead of HVS perception. Moreover, in the current stage, models are learned from a large data, but vali-

dated and tested on very small number of data. How to solve the data availability problem or how to learn from small data

deserves more works. Transfer learning [127,97,73] that transfers learned knowledge from a domain with plenty of data is a

possible solution and worthy further investigations. 

6.3. Further discussions 

When applying the VQA algorithm in the video coding modules as the quality objective, the adaptation of the VQA algo-

rithm from image/video based to block based is required [113] . Then, the adaptation on rate-distortion theory shall be also

re-considered since it was initially designed based on the MSE [82,67] . One shortcut way is to build a mathematical relation

between VQA and MSE before applying to video coding. However, this approximation decreases the VQA accuracy. In addi-

tion, the current VQAs are specific for different applications, such as image [24,118] , video [58,127,4] , stereo/3D [119,120] or

omnidirectional virtual reality [41] . Thus, the perceptual video encoding algorithms will be specifically designed by using

these metrics. A general purpose VQA that is applicable to different applications is preferred but hard to achieve. Another

challenging issue is the computational complexity. Since more advanced feature extraction tools and learned classifiers are

adopted in the quality prediction, the computational complexity increases significantly. High frequent calling the learning

based VQA algorithms, especially the deep learning based schemes, in the RDO will make the coding algorithm extremely

complex. How to integrate the VQA, especially the learning based VQA with better performance, into the video coding with

acceptable complexity is worthy to be studied. 

7. Conclusions and future works 

7.1. Conclusion 

In this article, we present a systemic survey on the recent advances and challenges associated with machine learning

video coding optimization, which aims to provide researchers with a strong foundation and open the horizon for data-driven

video signal processing. This survey is mainly presented from three key aspects, including learning based low complexity

optimization, learning based high efficiency coding optimization and learning based visual quality assessment. In each part,

the problem formulation, workflows, key technical advances, advantages and challenge issues are presented. These learning

based video coding optimizations can encode videos in a smarter manner and significantly improve the coding performances

for some coding modules. Problem formulation is the key to bridge the gap between coding algorithms and machine learning

algorithms, which determines the capabilities of exploiting the advantages of learning algorithms and maximizing the coding

effectiveness. For better adaptation and effectiveness, feature extraction and selection, instance/sample selection, and cost

function shall be properly designed while using the learning tools. End-to-end deep learning is a new emerging tool that can

significantly improve the prediction and classification accuracy in video coding. More investigations on problem formulation

and adaptation are still required. Meanwhile, this complexity overhead is an important issue that shall be well addressed

for practical applications. In summary, learning based coding optimizations do have many advantages and potentials, which

will be a promising direction for academic and industrial communities. 

7.2. Future works 

Based on the review of the related works, there rise a number of promising research directions for future work: 

1. Intelligent/smart video coding: not only encode the video in a smarter manner to enhance the coding efficiency,

but also enable the encoded videos with more advanced cognitive information, such as face/human recognition, ob-

ject/even detection, captioning and commenting for intelligent video applications. Merging the analytics and recog-

nition tasks with the encoding tasks not only can re-use the video information more efficiently, but also can reduce

the complexity from decoding for recognition, analytics and retrieval. In this case, the video coding shall consider

preserving the key features on analytics or recognition. 

2. Learning algorithm is one of the key factors on improving the coding performance. It is worth applying advanced

learning algorithms, such as active learning, ensemble learning, reinforcement learning, transfer learning and deep

learning, to video coding to tackle more complicated decision making problems in the new generation video coding

standards, i.e., VVC and beyond. 

3. Perception based video coding that explores the perceptual redundancies is a promising research area worthy of fu-

ture consideration. One of the most essential issues is to develop a well-recognized objective visual perceptual model

in term of accuracy, complexity and adaptability, where more understandings on HVS and large scale subjective vi-

sual data are required for model training and reliable validation. Meanwhile, rational integration of learning based

perception models as cost criterion to each video coding module will be challenging in terms of coding complexity

and adaptability. Effective implementations and perception based RDO theory need further investigations. 

4. Deep learning based video coding optimization is expected to continuously attract significant research interest, in-

cluding the prediction, filtering, enhancement, transform, control as well as new coding framework. Higher coding
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gains can be expected from the potential technical improvements. However, the computational complexity cost is a

critical issue that shall be well considered in the optimization. 

5. Low hardware and low cost implementation for machine learning based video coding, especially the deep learning

based schemes, will be an important issue for practical usage. 

6. The machine learning models, especially for deep learning, highly rely on the training data, i.e. , data dependency. For

the off-line learning models, they are fixed after training, which may degrade the coding performance once they are

applied to a new type of video contents or distributions. It is important to introduce the on-line or transfer learning

to update the learned models. Also, it is necessary to consider the trade-off between genericity and specificity of

learning models. 

In the future, we believe learning based coding optimization is a promising research direction for video coding. More

learning algorithms and optimization techniques will be continuously investigated and introduced in video coding to achieve

lower complexity, higher coding efficiency, higher visual quality as well as more intelligent functionalities. 
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